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The molecular morphology of amorphous regions of drawn semicrystalline polymers is calculated assuming 
a minimum of the free conformational energy, provided that crystallite and amorphous region thicknesses 
and density ratio and macromolecule elongation due to polymer drawing are given parameters. The 
proportions of regular folds, adjacent re-entrant and random re-entrant loops, and tie chains and the 
length distributions of these subchains are calculated as functions of the amorphous region thickness and 
macromolecule elongation. Using a Monte-Carlo simulation, the distribution of local density within the 
amorphous region was studied, and introduction into the theory of an interfacial layer between the crystallite 
and amorphous regions where possible conformations of subchains are limited was substantiated. 
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INTRODUCTION 

Melt crystallization and drawing of a polymer always 
result in the emergence of a heterogeneous structure 
containing alternating crystallites and amorphous 
regions of the order of 100 A ~'2. Molecular morphology 
must depend, on the one hand, on the parameters of the 
emerging structure and the conditions under which 
crystallization occurs (or recrystallization processes on 
polymer deformation) 3. On the other hand, it is the 
amorphous regions of semicrystalline polymers that 
may cause these structural parameters, thus limiting the 
crystallization process. In addition, the molecular 
morphology of the amorphous regions of semicrystalline 
polymers governs to a considerable extent their 
mechanical properties 4'5. Therefore, experimental and 
theoretical study of the molecular morphology of 
amorphous regions of semicrystalline polymers is an 
important problem of polymer physics. 

If the molecular weight of the polymer is high enough, 
then the probability of finding free ends of macro- 
molecules in the amorphous region is low. Each 
macromolecule crosses several crystalline and amorphous 
regions. Polymer segments in the amorphous region are 
anchored at the crystallite surfaces. These segments are 
hereafter referred to as subchains. Three kinds of such 
subchains are distinguished: loops, tie chains and cilia. 
Depending on the length and arrangement of loop 
attachment points over the crystallite surface, three kinds 
of loops are distinguished : 

(1) regular folds the shortest loops with adjacent 
re-entry; 

(2) adjacent re-entrant loops of arbitrary length ; and 
(3) long random re-entrant loops (Figure lb). 

*To whom correspondence should be addressed 

One of the main problems in the investigation of 
molecular morphology of amorphous regions is the 
determination of the proportion of folds, loops and tie 
chains and their length distributions. 

To solve this problem, some authors 6-8 simulated the 
subchains in the amorphous region by means of a 
random-walk model where the walk proceeds between 
absorbing planes - namely the surfaces of crystallites. A 
detailed investigation was carried out in ref. 9, where the 
chain behaviour in the amorphous region of a 
semicrystalline polymer was compared with the gambler's 
ruin problem known in mathematics. The formulae given 
there make it possible to calculate the proportions and 
length distributions of loops and tie chains as functions 
of the amorphous layer thickness. 

Various versions of the gambler's ruin problem have 
been used for the theoretical investigation of molecular 
morphology of the folded surface of crystallites. The most 
acute problem here has long been the problem of the 
relationship between proportions of regular fold, or, in 
more general terms, of adjacent re-entrant loops and long 
random re-entrant loops. The solution of this problem 
governs the choice between the regular folded crystal- 
lization model 1° now being actively developed by 
Hoffman et al. 11-13 and Flory's switchboard model 6"14--16. 
After long and detailed discussion ~7 24 the following 
consensus appears to be achieved in this problem: the 
proportion of adjacent re-entrant loops ranges from 70% 
to 80%, with the greater part of them being regular folds. 

Different data are now available on the problem of the 
proportions and length distributions for the tie chains 
and long loops  9'21'23. 

Interesting thermodynamic approaches to the pre- 
diction of the molecular morphology of the amorphous 
regions of semicrystalline polymers were developed 
elsewhere 25'26. However, the authors of both publications 
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do not introduce any limitations on the value of the 
amorphous region density. As a result, a temperature 
change of several tens of degrees causes a three- to 
four-fold change in the average subchain length. It is 
natural that the density of the amorphous region changes 
too, which does not allow these results 25'26 to be 
considered realistic. Besides, the problem of the 
relationship between the proportions of folds, loops and 
tie chains was not considered in these papers. 

Finally, none of the above publications T M  7--26 took 
into account chain extension on polymer drawing and 
hence none of them considered the effect of the latter on 
the molecular morphology of the amorphous region. 

The purpose of the present publication is to predict 
the molecular morphology of the amorphous region of 
a drawn polymer on the basis of minimization of its 
equilibrium conformational free energy at fixed sizes of 
crystallites c and amorphous regions a, with due regard 
to the real ratio of their densities (da/dc) and the degree 
of chain extension characterizing the drawing ratio. 

In the next section we formulate the principal equations 
of the theory, which can be solved numerically. We 
assume that subchains in amorphous regions are ideal 
and realize their possible conformations independently 
of one another. We take into account the subchain 
volume by introduction of the constant ratio of densities 
d,/dc. 

In the third section the results of a Monte-Carlo 
calculation of local density within the amorphous region 
are presented. This calculation is based on subchain 
length distributions that have been obtained in the 
previous part of the paper. It reveals a great density 
excess in the vicinity of the crystallite surface. To 
eliminate this defect, an interfacial layer between the 
crystalline and amorphous region where the possible 
conformations of subchains are limited is introduced into 
the theory. 

The results of calculation of the parameters of 
molecular morphology of the amorphous region with due 
regard to the interfacial layer are presented in the fourth 
section of the paper. Finally, we briefly discuss the results 
and the foundation of the theory. 

THEORY:  PRINCIPAL EQUATIONS 

Let us consider a macromolecule of length L in the 
stacked-lamellar model with lamellae of thickness c, 
separated by amorphous regions of thickness a (Figure 
1 ). Assume that the distance between the macromolecule 
ends (end-to-end distance) is constant and equal to R. 
The ratio R / L  characterizes the chain extension of the 
macromolecule due to polymer drawing. 

The molecular morphology of the amorphous region 
is assumed to correspond to a minimum of the free 
conformational energy under some given limitations, 
namely under given parameters of supermolecular 
structure a and c, the degree of macromolecule extension 
R / L  and ratio da/dc. In other words, the polymer system 
is assumed to have enough time to achieve local 
thermodynamic equilibrium compatible with the given 
limitations during melt crystallization and formation of 
lamellar or microfibrillar structure. 

So we should write down the expression for the total 
free conformational energy of all subchains of the 
macromolecule in the stacked-lamellar model as a 
function of the statistical weights of the different types 
of subchains and minimize it. 
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Figure 1 Macromolecule in stacked-lamellar model. (a) Character- 
istics : c = thickness of crystalline lamella ; a = thickness of amorphous  
region ; R = end-to-end distance of macromolecule ; SC, subchains in 
amorphous  region; CS, crystal stems. (b) Different types of 
subchains:  F, regular folds; A, adjacent re-entrant loops; L, random 
re-entrant loops; T, tie chains; r, l = parameters of subchain state (see 
text). (c) The z axis of drawing; e = unit vector of macromolecule 
orientation ; 1-4,  types of subchains, determined in the theory (see text ) 

Table 1 Permissible order of alternation ofsubchains of different types 

hi+ 1 

n i 1 2 3 4 

1 No Yes No Yes 
2 Yes No Yes No 
3 Yes No Yes No 
4 No Yes No Yes 

Let us imagine the macromolecule as a sequence of 
crystal stems and subchains (loops and tie chains) in 
amorphous regions (Figure la). There is one subchain 
for each crystal stem. The presence of the free ends 
can be neglected if we consider that L is sufficiently large. 
Let us determine the unit vector e at each point of the 
macromolecule, which determines its orientation. Let us 
determine four types of subchains (Figure le). If the 
projection of e on the z axis is positive at the point of 
exit from the crystallite, and negative at the entry point, 
we have a subchain of type 1 (loop). If vice versa, we 
have a subchain of type 2 (loop). If the projection of e 
on the z axis is positive at both the exit and entry points, 
we have a subchain of type 3 (tie chain). If both are 
negative, we have a subchain of type 4 (tie chain). It is 
clear that subchains of different types cannot follow one 
another arbitrarily. Their permissible sequence is given 
in Table 1, which indicates whether or not the ( / +  1 )th 
subchain can have the type ni+x, if the ith one had the 
type n i. It is clear that the numbers of subchains of the 
first and second types N 1 and N 2 cannot differ from each 
other by more than ___1. Since the total number of 
subchains in the macromolecule is considered to be large 
enough, we can write down approximately: 

N 1 = N 2 (1) 

Then, it is evident that the end-to-end distance is 
determined by the difference between the numbers of 
subchains of the third and fourth types (Figure la):  

N 3 - -  N 4 = R/(a  + c) (2) 
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The total number of subchains (and crystal stems) in the 
macromolecule is evidently equal to: 

N¢ = L/(c  + r) (3) 

where /-is the average length of the subchain in the 
amorphous region; l i s  rigidly coupled with the density 
ratio d,/d¢ between the amorphous region and the 
crystallite. Actually : 

7-= (da/dc)a (4) 

As the configuration of the macromolecule changes in 
the stacked-lamellar model, the type of the ith subchain 
n, the projection of the distance between the points of 
entry and exit of the subchain into and from crystallites 
on the plane of the crystallite surface r and the length l 
of the subchain can change (Figure lb). We shall 
characterize the subchain state by the set of variables 
{n,r, l} and shall search for the statistical weights of 
subchain states p (n, r, I). Each given state of subchains 
{n,r , l} has its own free conformational energy Fs 
depending on whether the subchain is a loop (n = 1, 2) 
or a tie chain (n = 3, 4) and on the distance r and the 
subchain length 1 : F~ (n, r, l). 

If F~(n, r, l) is known, the free conformational energy 
of the macromolecule F can be written as a function of 
the statistical weights p(n, r, l): 

F = ~ p ( n , r , l ) F ~ ( n , r , l ) -  TS (5) 
n,r, l  

where S is the entropy associated with all permissible 
rearrangements of subchains in the set of states {n, r, l}. 
It is not difficult to see that all the rearrangements of the 
subchains of type n give a contribution to the entropy : 

S./kN~= -~p(n,r,I) lnp(n,r,I)+ v. lnv. (6) 

where v. = N./N~ is the proportion of chains of type n 
and k is the Boltzmann constant. It is necessary to add 
here the contribution to the entropy associated with 
permissible rearrangements of subchains of different 
types within the macromolecule. The total number of 
different sequences of the subchain is equal to: 

Nc ! 

NI! N2! N3! N4[ 

However, among them there are sequences that contain 
a prohibited order of sequence of elements (see Table 1 ). 

Let us estimate the proportion of permissible sequences 
of subchains. The probability of meeting a prohibited 
subchain with n = 1 or n = 3 following a subchain of the 
first type is equal to (N 1 + Na) /N c. The probability of 
not meeting them after all subchains of the first type is 
apparently : 

[(N2 + N4)/N~] N' 

Reasoning in the same way with respect to the 
other prohibited pairs of subchains, let us estimate 
approximately the number of permissible sequences: 

F = N~! (N 2 + N4)N'+N4(N1 + N3) N2+N3 

N 1 ! N 2 ! N 3 [ N 4 !  N ~  c 

and the corresponding contribution to the entropy: 

Sraix/kN c = vl[ln(v 2 + V4)-  In vii  

+ v2[ln(v 1 + v3)-- In v2] 
+ va[ln(v 1 + v3) -- In v3] 
+ v4[ln(v 2 + v4)-- In v4] (7) 

Combining equations (5) (7) we have the expression 
for the free conformational energy of the macromolecule : 

F/N~= ~ p(n, r, I)Fs(n, r, 1)+ T ~ p(n, r, I)lnp(n, r, l) 
n,r,l n,r,l 

- T[(v2 + v3)ln(vl + v3) + (Vl + v4)ln(v2 + v4)] 

(8) 
It is necessary to find the minimum of F as a function 

of p(n, r, l) under the following conditions: 

p(n ,r , I )  = 1 (9) 
n,r,l 

lp(n, r, I) = -f (10) 
n,r,l 

[ p ( t , r , l )  - p(2, r,l)] = 0 (11) 
r,l 

R -f+ c 
~ E p ( 3 ,  r, 1 ) - p ( 4 ,  r,I)] . . . . .  (12) 
~,~ L a + c  

Formulae (9) and (10) are the condition of 
normalization and the condition of constancy of the 
average length of the subchain (actually, the condition 
of constancy of the density of the amorphous region); 
and formulae (11 ) and (12) are conditions (1) and (2) 
rewritten with the use of statistical weights to (n, r, l) and 
formula (3). Minimizing F by the Lagrange multiplier 
method and using conditions (9)-(12), we obtain after 
elementary transformation the expression for statistical 
weights and proportions of subchains of various types: 

2, [ Fs(n,r, 1)+fl l  I (13) 
p(n, r, l) = ~ exp kT  

~Y - -  ~ 
v, = v2 = 2tTT _ TLj (14) 

= 1)"/-- TL + F (  r - / e  "]2 S~( TT -- r~2 ] ' / 2  } 

v3, ,  2(:rT - TL -- L \ r ~  - k /  - S• \ r ,  - TL] J 

(15) 

where 

[v = St3/$3 T e =S t I /S  1 (16) 

are the average lengths oft ie  chains and loops, 

21 = 22 = 1 23 = 1/24 = ( v 3 / v 4 )  1/2 (17) 

Z = 2S1 + (23 + 2 4 ) S  3 (18) 

S t . = ~ / e x p  ~ n =  1,3 (19) 
r.l kT  

Summation in (19) is performed over all sites of the 
crystallite surface and for all values of 1 beginning from 
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l~m"l,. For loops (n = 1 ), l~!. is the length of a regular 
fold; for tie chains (n = 3), 'minl(3) = ( a  2 _~_ F2) 1/2 

The parameter fl is a function of the value of molecule 
elongation R / L  (at fixed values of a, c, da/d c and T) and 
can be found by numerical solution of equation (12) after 
substitution into it of formulae ( 15 ), (16) and ( 19 ). 

Formulae (12) (19) are applicable to any flexible- 
chain semicrystalline polymer to a degree depending on 
whether the assumptions of the correlation between 
molecular morphology and the local minimum of free 
conformational energy and of the independence of 
conformations of different subchains are correct. To carry 
out numerical calculations it is necessary to find the 
particular expression for the free conformational energy 
of a subchain Fs(n, r, l). 

In the present study we use for Fs(n, r, l) the results 
of the Monte-Carlo calculation and the approximations 
obtained in ref. 27. It was shown there that for 
polyethylene subchains (for both loops and tie chains) 
in the amorphous region F~(n, r, l) can be approximated 
by the expression: 

Vs(n, r, 1) = Vmin(n , I)[A + B exp(~x2)] (20) 

where for the loops 

x = r/l (21) 

Fmi n = 1035 - (7.1625 - 36/ -° -79)(T+ 28) 
J mol -  1 C H  2 

and for the tie chains 

x = (a 2 q- r2)1/2/1 (22) 

= 1192 -- (7.1625 -- 40 l - ° ' 89 ) (T+  50) 
J mol -  1 CH 2 

7 = 2.348 + 8 3 5 5 / - 1 " 3 6 3  (23) 

B -1 = e x p ( y ) -  1 A =  - 1 - B  (24) 

For loops of length 5 12 CH 2 units and for long tie 
chains where the mean-square vector of length ( r 2 ( l ) )  1/2 
is greater than the thickness of the amorphous region, 
approximations (26)-(31)  are inapplicable and it is 
necessary to use numerical data of the Monte-Carlo 
calculation 27. 

According to theoretical 2s-3° and experimental 31 
publications a loop of five CH 2 units is considered as the 
minimum possible one and is regarded as a regular fold. 

The method described in ref. 27 makes it possible to 
calculate the free conformational energy F s of a subchain 
on a diamond-type lattice. The distances between the 
crystalline stems on the crystallite surface of polyethylene 
(PE) differ from those in the diamond-type lattice. In 
the calculation of F S for the shortest loops we took into 
account only those conformations for which the 
end-to-end distances differ from the permissible distances 
on the PE crystal surface by not more than 0.25 A. 

So numerical solution of equations (12)-(19)  was 
obtained, using the expressions of Fs(n, r, l) given by 
formulae (20)- (24)  and by the Monte-Carlo method 27. 

LOCAL DENSITY WITHIN THE A M O R P H O U S  
REGION 

In deriving principal theoretical formulae (12)-(19)  it 
was assumed that the average density of the amorphous 
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region was constant (equation (10)). However, this did 
not guarantee the constancy of the local density, i.e. the 
absence of layers with density higher or lower than the 
average one. To control the local density we carried out 
a Monte-Carlo simulation of subchains of polyethylene 
in the amorphous region limited by parallel planes 
crystallite surfaces - according to statistical weights 
(equation (13)) (where /~ is obtained by numerical 
solution of equation (12)) and calculated the local density 
distribution within the amorphous region. 

To calculate the contribution of subchains of length 
l > 12 CH 2 units to the local density, their conformations 
in the amorphous region were simulated on a computer 
by means of the random-walk model on a diamond-type 
lattice between absorbing walls - crystallite faces just 
as was done in ref. 33. If random walks have their end 
on the same wall as where they started, we have a loop; 
if on the opposite side, a tie chain. The probabilities of 
different directions of steps on the lattice ~ were calculated 
from the formula: 

P = - e x p (  - E I / R T  ) exp[c~(z.~)] (25) 

where E~ is the energy of different conformers of the 
polyethylene chain according to ref. 34, z determines the 
direction of the orientation axis and ~ is the factor  
reflecting the asymmetry of random walks. 

The choice of the value of a depends on the elongation 
of the macromolecules of PE and is dictated by the 
following considerations. 

The probability of one or another subchain being met 
in the amorphous layer p(n,r ,  l) must be determined 
from formulae (12)-(19).  Let A d ( x ; n , r , l )  be the 
contribution to the local density of the subchain in the 
state {n, r, l} averaged over all possible conformations 
and let x be the distance from the crystallite surface. 
Then, the local density is apparently equal to: 

d ( x ) =  ~ A d ( x ; n , r , l ) p ( n , r , t )  (26) 
n,r,l 

It is clear that simulating the subchain by symmetric 
or asymmetric random walks we obtain a statistical 
distribution pw(n,r , l )  generally different from that 
obtained from our theory. If the computer simulation 
yields the total summed contribution to the local density 
of all the subchains built in the state close to {n, r, l} 
equal to dw(x; n, r, l), then the local density predicted 
by our theory can be estimated from the formula: 

d ( x ) =  ~ dw(x ;n , r , l  ) p (n , r , l )  (27) 
,,r.t pw(n, r, l) 

To decrease the variance of this estimate (and hence 
to decrease the required statistics) it appears necessary 
to select the random walk asymmetry factor so that 
pw(n, r, l) should be as close as possible to p(n, r, l). 

For short loops with length 5 < 1 < 12 (CH 2 units) 
the value of dw(x; n, r, l) was calculated on a computer 
directly, taking into account all possible conformations. 

Practically, for estimation of the local density 
distribution, the amorphous region of thickness a = 100 A 
was divided into 20 layers. Statistical weights p(n, r, l) 
and pw(n, r, l) are axially symmetric relative to r. Hence, 
r can be substituted with Jr] and pw(n,r , l )  can be 
estimated by means of two-dimensional histograms 
separately for the loops pL(r, l) and tie chains pr(r, l). 
Values of histogram intervals Ar Al were selected so that 
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in each interval there are not less than 10 subchains. 
Altogether, to obtain one local density distribution, 
about 105 various subchains were simulated. The local 
density distributions d(x) were calculated for the various 
values of macromolecule elongation R/L. The average 
density of the amorphous region was assumed to be 
constant and equal to da = 0.85dc (d~ is the crystallite 
density). 

Figure 2 presents the calculated local density 
distributions within the amorphous layer at various 
drawing ratios R/L. 

In slightly oriented polymer (R/L = 0.2) the density 
of the layer adjoining the crystallite surface exceeds the 
density of the crystallite by a factor of 2.1 (Figure 2a). 
As R/L increases, the value of the density excess 
decreases, but even at R/L = 0.7 it is still more than 
20% (Figure 2e). The density excess in this layer results 
in a deficiency of density in the middle of the amorphous 
region. 

Flory 22 noted that the density excess in the 
intermediate layer between the crystallite and the 
amorphous region in various models can be explained 
by the assumption of the possibility for each subchain 
to realize all possible conformations independently of 
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Figure 2 Local density distributions within amorohous region at 
various values of R/L and various thicknesses of interracial layer I s (in 
CH 2 units): c = a = 100 A; temperature 360 K; R/L = 0.2, l s = 0 (a), 
2(b) ,  3(c) ,  4 (d ) ;  R/L=0.7, l s = 0 ( e ) ,  2(f) ,  3(g) ,  4(h) .  The 
distributions are symmetric relative to the middle of the amorphous 
region 

other chains. In such a case, it is natural to weaken this 
assumption in our theory and take into account the fact 
that the conformations of the subchain must be limited 
near the crystallite surface. 

Assume that tie chains and long random re-entrant 
loops retain trans condformation at a distance ls from 
the crystallite surface. 

Let the adjacent re-entrant loops retain this conforma- 
tion at such a distance l <  Is that the remaining free 
section is not less than five CH 2 units in length. The 
shortest loops of length 5 6 CH 2 units still realize all 
possible conformations. As a result of such modification 
of the theory, an interracial layer of thickness l S is formed 
where the unit orientation degree decreases gradually. 

Limitation of possible conformations of tie chains and 
long loops is easy to take into account in the theory 
being developed. Trans sequences of length l s within the 
interfacial layer, which are included in tie chains and long 
random re-entrant loops, do not contribute to the free 
conformational energy Fs(n, r, l) of these subchains, but 
still contribute to average lengths I, lr and ~. Therefore, 
the results of numerical solution of equations ( 12 )-  (19) 
change. Namely, statistical weights p(n, r, I) (equation 
(13)) and proportions of adjacent re-entry and random 
re-entry for ls > 0 turn out to be quite different in 
comparison with those for Is = 0 .  This will be 
demonstrated in the next section. 

The thickness of the interfacial layer is a free parameter 
of the theory. We choose a value of l s that eliminates any 
defects in local density within the amorphous region. 

As our calculations show, the optimum value of 
thickness of this layer ls is three CH 2 units. In this case, 
as shown in Figures 2c and 2g, there is no excess density 
in the interfacial layer. Further increase in I, results in 
a density deficiency in the interfacial layer (Figures 2d 
and 2h ). 

RESULTS 
In Figure 3 the proportions of folds, loops and tie chains 
are presented as functions of the elongation of the 
macromolecule R/L and thickness of the amorphous 
region a. 

Let us first describe the molecular morphology of the 
amorphous regions in isotropic polymers. For  the 
amorphous region with a = 100/~ at R/L = 0 and I s = 0 
our calculations give the proportion of regular folds 
VF, = 7%, and the proportion of adjacent re-entrant 
loops v A, = 32%. As the thickness of the amorphous 
region decreases, v F, and v A, increase (Figure 3b, broken 
curves F' and A'). Figure 3 shows that in assuming the 
thickness of the interfacial layer to be ls = 3 (in CH 2 
units) the proportion of adjacent re-entry increases 
sharply at R/L = 0 : from 32% at Is = 0 to 78% at Is = 3. 
The proportion of regular folds of length five CH 2 units 
grows from 7% to 38%. 

As mentioned above, a consensus has been achieved 
as a result of earlier publications ~,9,17-21,23,24 in the 
discussion on the structure of the crystallite surface and 
interracial layer. It was shown for different models that 
the degree of adjacent re-entry into crystallite v A is equal 
to 74-80%.  The value v A = 78% obtained in the present 
publication using a different approach confirms this 
result. 

Comparison of the broken curves F', A', L' and the 
full curves F, A, L from Figure 3 shows that the 
introduction of an interfacial layer of thickness I s = 3 into 
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Figure 3 Dependences of portions of different types of subchains on 
R/L and a: (a) a =  100~, (b) R/L = 0.01; T,T', tie chains; L,L', 
random re-entrant loops ; A,A', adjacent re-entrant loops ; F,F',  regular 
folds; I s = 0  (A', F', L', T'), l~=3  (A, F, L, T);  d,/dc=0.85; 
temperature 360 K 

the theory also results in a radical change in the 
dependences of the proportions of folds, and adjacent 
and random re-entrant loops on R/L  and a. It should 
be remembered that the dependences represented by the 
broken curves F', A', L' correspond to an unrealistic 
situation of abnormally high local density in the vicinity 
of the crystallite surface. We present them only for a 
better understanding of the influence of the interfacial 
layer on the results. 

On the contrary, introduction of the interfacial layer 
has a weak influence on the proportion of tie chains. 

The proportion of tie chains at a = 100 A and R/L  = 0 
equals v T = 10%. It is nearly three times as big as that 
in the gambler s ruin problem (3% at a = 100 A). This 
proportion grows more slowly with decreasing a than in 
the gambler 's ruin problem (Figure 2b, curves T, T'). 

As macromolecule elongation R/L  increases due to 
polymer drawing, the proportion of tie chains increases 
(at R/L  > 0.2 nearly linearly - Figure 3a, curve T). The 
analysis of numerical data shows that, at such values of 
R/L,  v 3 >> v 4 and the proportion of tie chains : 

R c + (d./d¢)a 
y T " ~  Y 3 ~--- (28) 

L c + a  

This result is in good agreement with the experimentally 
known nearly linear dependence of polymer strength on 
drawing ratio 4'5. 

Figure 3b demonstrates a weak dependence of any 
subchain proportion (F, A, L, T)  on the thickness of the 
amorphous region a at R/L  = 0. It is worth mentioning 
that at R/L  > 0.2 these proportions do not practically 
depend on a at all. 

Our calculations have been carried out for two values 
of density of the amorphous layer: da/d ~ = 0.85 and 
d~/d~ = 1. The influence of this ratio on the results is 
small up to R/L  = 0.8. At R/L  > 0.8 and dJd¢ = 0.85, 

no value of fl exists which would satisfy equation (12). 
At da/d ¢ = 1 such a value offl exists up to R / L  = 1. Thus 
the model indirectly predicts an increase in the 
amorphous region density with increase of drawing ratio. 
This agrees with experiment 1'2. 

As distinct from other publications 25'26 our model 
does not predict a pronounced relationship between the 
parameters of molecular morphology of the amorphous 
region and crystallite thickness c and temperature T. 
Formula (25) gives some idea about the effect of the 
value of c on the results. The degree of temperature 
influence is seen from Figure 4. This figure demonstrates 
the form of the length distributions of tie chains and 
loops and their dependence on the ratio R/L.  

Figure 5 shows the average length of tie chains and 
loops (including regular folds) as a function of a for 
various values of R/L.  For tie chains all the given 

o b 

i o A 

4 0  

0 300  600  
z (~) 

Figure4 Length distributions of (a) tie chains and (b) loops 
(including regular folds): a = 100/~ ; da/d e = 0.85 ; curve A, RIL = 0.4, 
T = 2 7 3 K ;  curve B, R/L=O, T = 2 7 3 K ;  curve C, R/L=0.4, 
T = 413 K;  curve D, R/L = 0, T = 413 K 
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Figure 5 Dependences of average lengths of subchains on a at various 
R/L: (a) tie chains, (b) loops (including regular folds); R/L = 0  
(A, F), 0.1 (B), 0.2 (C), 0.5 (D), 0.8 (E), 0.9 (G);  da/d ¢ = 0.85 (A E), 
1 (F, G) ;  temperature = 360 K. (c) Dependences of parameters/~ and 
h- on R/L (see formula (26)) 
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relationships (Figure 5a) can be approximated with 
sufficient accuracy by the formula: 

l T = /m" (29) 

Coefficients /~ and x depend on the ratio R/L (Figure 
5c). At R/L = 0, index x equals 1.7. In the gambler's 
ruin model the average length of tie chains is proportional 
to a 2. Thus, at the same value of a our theory predicts 
a smaller value of the average tie chain length than does 
the gambler's ruin model. For instance, at a = 100/~, 1T 
is twice as small in our theory as that in the gambler's 
ruin model. 

The mean-square deviation for tie chains Al decreases 
rapidly as R/L increases. According to the experimental 
data TM, A1 for highly drawn polymers is less than 10% 
of the amorphous region thickness. Our theory predicts 
such values of Al at R/L > 0.8. 

The average length of loops 1F decreases and the 
dependence of T r on a disappears as R/L increases. At 
R/L > 0.5, Tv is less than twice as long as the regular fold. 

DISCUSSION 

Until recently the most detailed information about 
molecular morphology of the amorphous region of 
semicrystalline polymers was provided by the gambler's 
ruin model. The theory presented here has a quite 
different foundation and provides at least as detailed 
information as the gambler's ruin model for both 
isotropic and drawn polymers. The predictions of these 
theories concerning the proportions of adjacent re- 
entrant loops and regular folds are quite similar. There 
is qualitative agreement with respect to the dependences 
of the proportions of tie chains and loops and their 
average lengths on the amorphous region thickness a, 
but there is no quantitative agreement. Our theory 
predicts that the proportion of tie chains is considerably 
greater and its dependence on a is considerably weaker 
than in the gambler's ruin problem. The average length 
of tie chains at a = 100 ~ is twice as small as that in the 
gambler's ruin problem and is affected by a considerably 
more weakly. 

The anisotropic variant of the gambler's ruin model 
(see formulae (A1 la), (A12a), (A20) and (A21) of ref. 
9 and ref. 33) predicts independence of the proportions 
of different types of subchains on the degree of chain 
extension if the anisotropy is strong enough. The same 
is predicted by our theory. However, the proportions of 
different types of subchains and their length distributions 
predicted by our theory differs quantitatively as 
compared with the anisotropic gambler's ruin model 
predictions. 

In this paper the proportions of loops and tie chains 
are considered to be affected by the molecular parameter 
R/L. To consider the dependence of these proportions 
on macroscopic draw ratio 2, the well known relation: 

2 = (R/L)(N/CN) 1/2 sin 0 -  1 (30) 

should be used, where N is the number of C H  2 units in 
the chain, 0 is the bond angle and CN is a characteristic 
ratio for the chain with N units. So far, by L we have 
meant the contour length of the entire macromolecule, 
and by R its end-to-end distance. However, in reality, 
macromolecules form an entanglement network. If the 
network is sufficiently loose (and N is sufficiently large), 
we can refer L and R to a polymer segment located 

between two crosslinks of the network. If, however, the 
polymer segments of the network are comparable with 
the size of crystallites c, this cannot be done, since our 
theory requires that L be much longer than c. However, 
taking into account the fact that in the draw process 
reptations and disentanglements are inevitable, the value 
of the polymer segment in the network is unlikely to be 
considered as a well determined parameter, and 
additional investigation is required in this field. 

There is a good deal of experimental data L2 indicating 
that the structure of a polymer (in particular the 
proportion of loops and tie chains) depends on the 
kinetics of crystallization and drawing. One should not 
consider that our theory is at variance with these facts. 
According to the theory, the molecular morphology of 
the amorphous region corresponds to a minimum of the 
free conformational energy under the given limitations ( c, 
a, R/L are considered to be constants ), i.e. it corresponds 
to a local thermodynamic equilibrium. The limitations 
mentioned above are assumed to reflect the kinetics of 
the crystallization and drawing. 

CONCLUSION 

The theory affords a solution to the problem of the 
molecular morphology of the amorphous region in both 
isotropic and highly drawn polymers. It is based on 
the assumption that molecular morphology corresponds 
to a minimum of the total free conformational energy of 
subchains in amorphous regions provided that the 
thicknesses of crystallites c and amorphous regions a, the 
degree of macromolecule extension R/L and the ratio of 
densities da/d c are given parameters. 

Detailed information about the dependences of the 
proportions of tie chains, loops and folds on a and R/L 
is obtained. These dependences are qualitatively similar 
to those of the gambler's ruin model (in its isotropic and 
anisotropic variants), though considerable quantitative 
differences are seen. 

Monte-Carlo calculation of the local density distribution 
within the amorphous region was carried out. It was 
shown that an interfacial layer between the crystallite 
and the amorphous region should be introduced into the 
theory to avoid a density excess in the vicinity of the 
crystallite surface. Within the interfacial layer the 
conformations of long subchains are limited. The 
optimum thickness of the interfaciai layer was found to 
be equal to three C H  2 units. The introduction of this 
interfacial layer considerably affects the proportions of 
adjacent and random re-entrant loops and their 
dependences on a and R/L. 

The value obtained in the theory for the proportion 
of adjacent re-entry (78%) confirms the consensus 
reached in this field. 

The predictions of a linear dependence of the 
proportion of tie chains on the degree of macromolecule 
extension R/L and values of the mean-square deviation 
of the tie chain distribution at high values of R/L 
correspond satisfactorily to the available experimental 
data. 
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